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Weyl Spinor and Solution of Massless Free Field
Equations
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The massless field equations for arbitrary spin in curved space-time are
reconsidered. The general solution of the field equation in Robertson–Walker
space-time that was previously determined is briefly discussed after explicitly
showing that the Weyl spinor vanishes. The case of the Lemaître–Tolman–Bondi
space-time is studied in detail. The general expression of the corresponding Weyl
spinor is obtained and some particular situations exploited. The spin-3/2 and
spin-2 massless field equations are solved explicitly. The solutions are simplified
by the existence of nontrivial algebraic constraints. The angular part of the
equations is separated by the usual separation method and integrated directly.
The other equations that are not separated in the radial and time dependence are
reduced to a simple form. The results obtained are extended, as a consequence
of previous results, to the case of arbitrary spin. The solution of the general case
essentially reduces to the treatment of spin 3/2 and spin 2.

1. INTRODUCTION

The massless free field equations in curved space-time are of interest
not only on physical grounds, but also because the space-time curvature in
general implies restrictions on the field components. The object of this paper
is to find explicit solutions of the massless free field equations in concrete
examples of space-time. As usual, the Newman and Penrose (1962) spinorial
formalim is the best tool to formulate these equations. Accordingly, the
massless free field equations for field of spin s 5 (n 1 1)/2 are written

¹AA8 fA
A1A2 . . . An 5 0, fAA1A2...An 5 f(AA1A2...An) (1)

As is well known, these equations are consistent for s 5 1/2 and s 5 1 in
a general curved space-time, while for higher spin values they must satisfy
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consistency algebraic conditions. Indeed, by applying the covariant spinorial
operator ¹A1A8 to Eqs. (1) one concludes (Buchdahl, 1958, 1962; Plebański,
1965; Penrose and Rindler, 1984) that the field must satisfy, for n $ 1 (s $
3/2), the n conditions

(n 2 1)fAA1M(A2A3...An21C
AA1M
An) 5 0 (2)

CABCD is the conformal Weyl spinor. Therefore in a general space-time the
n 1 2 independent components of the field are, in principle, drastically
reduced to two by the constraints (2). On the other hand, Eqs. (2) are automati-
cally satisfied for conformally Minkoskian space-times or for fAA1A2...An the
Weyl spinor CABCD. A discussion of intermediate situations according to the
Petrov-type classification of the Weyl spinor can be found in Bell and Szekeres
(1972) and references therein. The existence of the constraints (2) has, how-
ever, some advantages. In many cases they imply that some of the spinor
field components have to be chosen to be zero. After all, this is a simplification
of Eq. (1), whose solution could be otherwise very difficult to obtain in
general.

In the following we study Eq. (1) in the Robertson–Walker (RW) and
Lemaître–Tolman–Bondi (LTB) space-times. The solution of that equation
in the RW space-time, which is well known to be a conformally flat space-
time (see, e.g., Penrose and Rindler, 1984), has already been obtained. The
result was performed by generalizing the explicit solution of the case s 5 2
(Zecca, 1996). As will be done in the next section, it is, however, of some
interest to calculate one of the curvature spinors, in the RW space-time, that
leads in a straighforward way to the vanishing of the Weyl spinor.

Equations (1) and (2) are then studied in the LTB space-time that is
known to be of Petrov type D (Krasiński, 1997, and references therein) [for
the LTB cosmological model see also Zecca (1993)]. By the use of a suitable
null tetrad frame the general form of the Weyl spinor is determined. Some
examples of LTB space-time with vanishing Weyl spinor are briefly discussed.
Then Eqs. (1) and (2) are studied explicitly for s 5 3/2, s 5 2. In both cases
it is possible to separate the angular part of the solution, which can easily
be integrated. Knowledge of the r, t dependence of the field solution is
reduced to the study of differential equations not separated, in general, in
the r, t dependence. Even if these equations can be reduced to a simple form,
their solution requires the explicit form of the metric coefficient.

By following considerations of a previous paper (Zecca, 1996), the
results relative to the solution of the massless free field equations can be
generalized, by induction, to arbitrary spin values. This because the structure
of the Weyl spinor together with the constraints (2) implies that only two or
three independent components of the field are nonzero according to whether
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the spin is half-integer or integer. In turn this implies that the equations of
the general case can be integrated as for s 5 3/2 or s 5 2.

2. ROBERTSON–WALKER SPACE-TIME

Even if the geometry of the RW space-time model is well known (Penrose
and Rindler, 1984; Krasiński, 1997), it is of some interest to show the
vanishing of the Weyl spinor by a direct computation. To that end, associated
to the metric

ds2 5 dt2 2 R2(t)F dr 2

1 2 ar 2 1 r 2(du2 1 sin2u dw2)G, a 5 0, 61

(3)

we consider the null tetrad frame used in Zecca (1996), whose corresponding
s-matrices have the form

st
AA8 5

1
2 11 0

0 12, sr
AA8 5

(1 2 ar 2)1/2

2R 11 0
0 212

su
AA8 5

1
2R 10 1

1 02, sw
AA8 5

i
2rR sin u 1 0 1

21 02 (4)

The Weyl spinor CABCD defined by the gravitational spinor XABCD

CABCD :5 X(ABCD) [ XA(BCD) (5)

can then be expressed by the s-matrices since

XABCD :5
1
4

s a
AX8s bX8

B s c
CY8s dY8

D Rabcd (6)

Rabcd is the Riemann curvature tensor and the identifications x0 5 t, x1 5 r,
x2 5 u, x3 5 w hold. By applying tabulated results for spherically symmetric
space-times, one immediatly gets from the metric (3) (Cahill and McVittie,
1970) the independent nonzero component of the Riemann tensor (Ṙ 5 ­R/­t)

R2323 5 2r 4R2(a 1 Ṙ2) sin2u

R1212 5
R3131

sin2u
5 2

r 2R2

1 2 ar 2 (a 1 Ṙ2)

R1010 5
RR̈

1 2 ar 2 (7)
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R2020 5
R3030

sin2u
5 r 2RR̈, a 5 0, 61

By using the expressions (4) and (7), one can then calculate the curvature
spinor XABCD in (6). To that end it is useful to tabulate expressions of the
form s a

AX8s bX8
B . After this operation and some algebraic computations one

finally gets

XABCD 5
a 1 Ṙ2 1 RR̈

4 Fr 2su
ABsu

CD 2
1
R2 st

ABst
CD

1
1

1 2 ar 2 sr
ABsr

CDG (8)

By defining as usual

fh [ fAA1A2 . . . An ⇔ A 1 A1 1 A2 . . . 1 An 5 h,

h 5 0, 1, 2, . . . , n 1 1 (9)

from (8) and from CABCD [ XA(BCD), it is then easy to show that

C0 5 C1 5 C2 5 C3 5 C4 5 0 (10)

The RW space-time is not only locally conformal to Minkowski space, as
implied by Eq. (10), but it can be shown that it is also conformally flat
(Penrose and Rindler, 1984). The constraints (2) have no effect and Eq. (1)
have to be integrated in their generality. This has been already done in Zecca
(1996), where the equations have been separated for arbitrary spin value by
applying the usual separation method. All the separated equations have been
integrated in general, except the radial equations relative to the open and
closed space-time case.

3. LTB SPACE-TIME: THE WEYL SPINOR

We consider now the general LTB space-time of metric

ds2 5 dt2 2 eG dr 2 2 Y 2(du2 1 sin2u dw2) (11)

where G 5 G(r, t), Y 5 Y(r, t) . 0. The situation is of interest because the
metric coefficients do not have a factorized dependence of the coordinate
variables. By using again the tabulated form for spherically symmetric space-
time (Cahill and McVittie, 1970), we find that the independent nonzero
components of the Riemann tensor take the values (Y 8 5 ­Y/­r)
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R2323 5 2Y 2 sin2u(1 1 Ẏ 2 2 Y 82e2G)

R1212 5
R3131

sin2u
5 Y1Y 9 2

G8Y 8

2
2

Ẏ Ġ
2

eG2
R1220 5

R1330

sin2u
5 2YẎ 8 1 YY 8

Ġ
2

R1010 5 eG1G̈
2

1
Ġ2

4 2 (12)

R2020 5
R3030

sin2u
5 YŸ

To determine CABCD, and in view of further considerations, we choose the
null tetrad frame (Zecca, 1993)

li [
1

!2
(1, e2G, 0, 0)

ni [
1

!2
(1, 2e2G, 0, 0)

mi [
1

Y!2 10, 0, 1,
i

sin u2 (13)

m*i [
1

Y!2 10, 0, 1, 2
i

sin u2
to which there correspond the s-matrices

s t
AA8 5

1
2 11 0

0 12, s r
AA8 5

1
2

e2G11 0
0 212

(14)

su
AA8 5

1
2Y 10 1

1 02, sw
AA8 5

i
2Y sin u 1 0 1

21 02
By proceeding as in the previous section, one gets after some calculations

XABCD 5 su
ABsu

CD H1
4

(1 1 Ẏ 2 2 Y82e2G) 1
Y 2

4 1G̈
2

1
Ġ2

4 2J
1 st

ABst
CDHe2G

4Y 1Y 9 2
G8Y 8

2
2

Ẏ Ġ
2

eG2 2
Ÿ
4YJ
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1 sr
ABsr

CDHeGŸ
4Y

2
1

4Y 1Y 9 2
G8Y 8

2
2

ẎĠ
2

eG2J (15)

(here Ẏ 5 ­Y/­t, Y 8 5 ­Y/­r). By performing then the symmetrization XA(BCD),
one arrives at

C0 5 C1 5 C3 5 C4 5 0

C2 5
1
24 H1 1 Ẏ 2 2 Y 82e2G

Y 2 1
e2G

Y 1Y 9 2
G8Y 8

2
2

Ẏ Ġ
2

eG21
G̈
2

1
Ġ2

4
2

Ÿ
YJ
(16)

The result can be checked in two limiting situations. By choosing exp(G) 5
R2(t)/(1 2 ar 2), Y 5 rR(t) (the RW case) in Eq. (15) one obtains exactly the
expression (8) for the spinor XABCD. On the other hand, let us consider the
special case represented by the LTB cosmological model. For this model
(which represents a spherically symmetric solution of the Einstein equation
for a universe filled with dust matter), the G and Y functions are no longer
independent, but are such that

eG 5
Y 82

1 1 2E

ŸY 2 5 2m(r)

Ẏ 2

2
2

m(r)
Y

5 E (17)

m(r) 5 4pG #
r

0

hY 2Y 8 dr

where E 5 E(r) is an arbitrary function of r and h 5 h(r, t) represents the
density of the dust matter (see, e.g., Kraziński, 1997, and references therein).
When Eqs. (17) are put into Eq. (16), one gets

C2 5 2
1
4 F2

m(r)
Y 3 1

4
3

pGhG (18)

which is the expression obtained in Zecca (1993), apart from the 21/4 factor,
which depends on the definition of the Weyl spinor used here (Penrose and
Rindler, 1984) and there (Chandrasekhar, 1983).

It is worth noticing that the spinor component C2 in Eq. (16) depends
in general on the two arbitrary functions G, Y. Also, by requiring the condition
C2 5 0 (the space-time is then, at least locally, conformal to Minkowski
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space), the metric still depends on an arbitrary function. For example, consider
the following cases:

(i) Suppose the metric coefficients have an RW-like form Y 5 R(t) f (r),
eG 5 R(t)g(r) with R a function of t, and f and g functions of r. By considering
Eq. (16) with these assumptions, the equation C2 5 0 implies

1
f 2 2

1
g 1f 82

f 2 2
f 9

f 2 2
1
2

g8

g
a8

a
5 0 (19)

and R(t) remains arbitrary. By choosing, e.g., f 5 r, or f 5 exp(7r), the
expressions g 5 1 2 ar 2 and g 5 [B 1 exp(62r)]21 (B is an integration
constant) are then, respectively, solutions of Eq. (19).

(ii) Consider now the static case G 5 G(r), Y 5 Y(r) in Eq. (16). Then
C2 5 0 implies, with Z 5 2 exp(2G), the Bernoulli equation

2 Z 8 1 2Z1Y 9

Y 8
2

Y 8

Y 2 5 22
Z 2

YY 8
(20)

whose solution is

Z 5 212Y 82

Y 2 #
r Y

Y 83
dr2

21

If, for instance, Y 5 r, then Z 5 21, G 5 0.

4. LTB SPACE-TIME: THE s 5 3/2 EQUATION

Equation (1) can be made explicit, in the Newman–Penrose formalism,
by expanding in terms of the spin coefficients and of the directional derivatives
D 5 li ­i [ ­008, D 5 ni ­i [ ­118, d 5 mi ­i [ ­108, d* 5 m*i­i [­ 018. In
case of s 5 3/2 one obtains, in a general space-time, the independent equations

(D 2 3r 2 e)f1 2 (d* 2 3a 1 p)f0 1 2kf2 5 0

(D 1 e 2 2r)f2 2 (d* 2 a 1 2p)f1 1 kf3 1 lf0 5 0

(D 2 r 1 3e)f3 2 (d* 1 a 1 3p)f2 1 2lf1 5 0
(21)

(D 1 m 2 3g)f0 2 (d 2 3t 2 b)f1 2 2sf2 5 0

(D 1 2m 2 g)f1 2 (d 2 2t 1 b)f2 2 sf3 2 nf0 5 0

(D 1 3m 1 g)f2 2 (d 2 t 1 3b)f3 2 2nf1 5 0

The constraints (2) become for s 5 3/2

f0C3 2 3f1C2 1 3f2C1 2 f3C0 5 0
(22)

f0C4 2 3f1C3 1 3f2C2 2 f3C1 5 0
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By considering the Weyl spinor in (16), the field solutions are therefore
subject to the restrictions

f1 5 f2 5 0 (23)

In case of the LTB space-time, where the nonzero spin coefficients relative
to the null tetrad (13) are (Zecca, 1993)

r 5 2
1

Y!2
(Ẏ 1 Y 8e2G/2)

m 5
1

Y!2
(Ẏ 2 Y 8e2G/2)

(24)

b 5 2a 5
1

2!2Y
cot u

e 5 2g 5
Ġ

4!2

the field equations (21) reduce to the system of differential equations

(d* 2 3a)f0 5 0

(D 1 m 2 3g)f0 5 0
(25)

(d 2 3a)f3 5 0

(D 1 3e 2 r)f3 5 0

By the structure of the directional derivatives and of the spin coefficients the
angular part can be separated and integrated, for both f0 and f3, in the
solution of Eqs. (25). The separated equations in the r, t variables can be
rearranged so that one finally obtains

f0 5 eimw(sin u)22(tan u/2)2mf0(r, t)
(26)

f3 5 e2inw(sin u)22(tan u/2)2nf3(r, t)

where m, n 5 0, 61, 62, . . . , and f0(r, t) and f3(r, t) are solutions of
the equations

D[log(Yf0)] 5 2
3

4!2
Ġ

(27)

D[log(Yf3)] 5 2
3

4!2
Ġ

which could be solved, in principle, by giving the functions G, Y. It must be
remarked that the solutions are not regular for u 5 0.
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5. LTB SPACE-TIME: THE s 5 2 EQUATION

The independent massless spin-2 equations obtained by making Eq. (1)
explicit as in the previous case are (Bell and Szekeres, 1972; Zecca, 1996)

(D 2 2e 2 4r)f1 2 (d* 1 p 2 4a)f0 1 3kf2 5 0

(D 2 3r)f2 2 (d* 1 2p 2 2a)f1 1 2kf3 1 lf0 5 0

(D 2 2e 2 2r)f3 2 (d* 1 3p)f2 1 kf4 1 2lf1 5 0

(D 1 4e 2 r)f4 2 (d* 1 4p 1 2a)f3 1 3lf2 5 0
(28)

(D 1 m 2 4g)f0 2 (d 2 4t 2 2b)f1 2 3sf2 5 0

(D 1 2m 2 2g)f1 2 (d 2 3t)f2 2 2sf3 2 nf0 5 0

(D 1 3m)f2 2 (d 1 2b 2 2t)f3 2 2nf1 2 sf4 5 0

(D 1 4m 1 2g)f3 2 (d 1 4b 2 t)f4 1 3nf2 5 0

The constraints (2) for s 5 2 become

f0C3 2 3f1C2 1 3f2C1 2 f3C0 5 0

f1C4 2 3f2C3 1 3f3C2 2 f4C1 5 0
(29)

f0C4 2 2f1C3 1 3f3C1 2 f4C0 5 0

and together with (16) imply

f1 5 f2 5 0 (30)

By considering the spin coefficients (24) and the constraints (30) in Eqs.
(29), we reduce the field equations to be solved to

(d* 2 4a)f0 5 (D 1 m 2 4g)f0 5 0

df2 5 d*f2 5 0
(31)

(D 2 3r)f2 5 (D 2 3m)f2 5 0

(D 2 r 2 4e)f4 5 (d 1 4b)f4 5 0

From the second row in Eqs. (31) one has that f2 is independent of u, w, f2

5 f2 (r, t), so that the two remaining equations for f2 can be simultaneously
integrated to give

f2 5 f2(r, t) 5 AY 23 (32)

A is an integration constant. With regard to the equation relative to f0, f4,
by considering the expressions of the spin coefficients and of the directional
derivatives, one has that the angular part factors out and can be easily
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integrated as in the s 5 3/2 case. The radial equations can be recast into a
simpler form so that the solutions are

f0 5 eimw(sin u)23/2(tan u/2)2mf0(r, t)
(33)

f4 5 e2inw(sin u)23/2(tan u/2)2nf4(r, t)

m, n 5 0, 61, 62, . . . , and f0(r, t) and f4(r, t) are determined by the equations

D[log(Yf0)] 5 2
Ġ

!2
(34)

D[log(Yf4)] 5 2
Ġ

!2

Also here the solutions are not regular for u 5 0.

6. LTB SPACE-TIME: GENERALIZATIONS

The previous conclusions can be extended to the general case of arbitrary
spin. The system of coupled differential equations obtained by developing
Eqs. (1) in terms of the directional derivatives and of the spin coefficients
seems to be very difficult to solve in a general curved space-time. However,
owing to the particular structure of the spin coefficients (24) one immediately
realizes that the considerations developed for the RW space-time in Zecca
(1996) apply also to the LTB case. Therefore Eqs. (1), when expanded in
the LTB case, become a system of coupled equations each of which involves
only two components fh , fh11 of the field. [This is evident in Eqs. (21),
(28) by using the fact that in LTB space-time k 5 l 5 p 5 t 5 s 5 n 5
0, and the property follows by induction in the general case (Zecca, 1996).]
On the other hand, when the constraints (2) are taken into consideration
together with the form (16) of the Weyl spinor, one must also require fh 5
0 for a suitable set of values of h depending on n. More precisely, it is not
difficult to show that Eqs. (2) and (16) imply the following possibilities:

1. s is integer; then fh 5 0 for h Þ 0, (n 1 1)/2, n 1 1.
2. s is half-integer; then fh 5 0 for h Þ 0, n 1 1.
Therefore the solution of the massless free field equations for arbitrary

spin in the LTB space-time reduce to the determination of the two or three
nonzero independent components of the field according to whether the value
of the spin is half-integer or integer. This can be performed in the same
fashion as was previously done for s 5 3/2 and s 5 2, respectively.
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